Go top
Conference paper information

Application of Data Mining Techniques to Identify Structural. Congestion Problems under Uncertainty

E.F. Sánchez-Úbeda, J. Peco, P. Raymont, T. Gómez, S. Bañales, A.L. Hernández

IEEE PowerTech Conference - PowerTech 2001, Porto (Portugal). 10-13 September 2001


Summary:

This paper proposes a novel methodology to identify congestion problems under both «traditional» and «new» uncertainties such as generation costs, location and size of new generators, retirement of old ones, generation patterns, etc. The methodology allows not only identifying the transmission paths and corridors which will have congestion problems, but also the scenarios producing these critical situations. Thus, it can be used not only to simplify the study of new investments (reinforcement of existing lines), but also to facilitate the evaluation of hedging strategies and the design of proactive policies to avoid the detected congestion.


Keywords: Transmission planning, congestion management, uncertainty, data mining, artificial intelligence techniques, automatic learning, decision trees.


DOI: DOI icon https://doi.org/10.1109/PTC.2001.964622

Publication date: 2001-09-10.



Citation:
E.F. Sánchez-Úbeda, J. Peco, P. Raymont, T. Gómez, S. Bañales, A.L. Hernández, Application of Data Mining Techniques to Identify Structural. Congestion Problems under Uncertainty, IEEE PowerTech Conference - PowerTech 2001, Porto (Portugal). 10-13 September 2001.


    Research topics:
  • *Forecasting and Data Mining

Request Request the document to be emailed to you.